Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xiao-Ru Zhang, Ji-Long Jia, Xue-Mei Li and Shu-Sheng Zhang*

College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong,
People's Republic of China

Correspondence e-mail: shushzhang@126.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.034$
$w R$ factor $=0.083$
Data-to-parameter ratio $=14.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

Diaquabis[N-(2-pyridylmethyl)benzamide- $\left.\kappa^{2} N, O\right]$ cadmium(II) dinitrate

In the title compound, $\left[\mathrm{Cd}\left(\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)_{2}$, the Cd atom, located on a twofold rotation axis, is octahedrally coordinated by O and N atoms from two benzamide ligands, and two O atoms from water molecules also located on the twofold axis. Molecules are linked into chains along the b axis by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The packing is further stabilized into a three-dimensional framework by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interaction.

Comment

It is known that some benzamide molecules with the aminopyridine structure exhibit anti-ulcerogenic, sedative or antiinflammatory properties (Arora et al., 2005; Nielsen et al., 2004). As part of our ongoing research on this type of molecule, the crystal structure of the title complex, (I), is reported.

(I)

The $\mathrm{Cd}^{\mathrm{II}}$ atom, which is located on a twofold rotation axis, is six-coordinated by two O atoms and two N atoms from two benzamide ligands, and two O atoms from two water molecules also located on the twofold axis (Fig. 1). The geometry around the Cd atom is octahedral, and two nitrate anions lie outside the coordination sphere, balancing the charge. The amide $\mathrm{C}-\mathrm{N}$ bond is known to possess a partial double-bond character due to donation of the non-bonding electron pair on the nitrogen (Fekner et al., 2004). As expected, the benzamide chelate is not planar and the two aromatic rings make a dihedral angle of $60.6(1)^{\circ}$.

In the crystal structure, the water molecules act as donors to form $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1). These hydrogen bonds involving the nitrate anions link the ions and molecules

Received 18 November 2005 Accepted 21 December 2005 Online 7 January 2006
into chains along the b axis (Fig. 2). The packing is further stabilized into a three-dimensional framework by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interactions (see Table 1 and Fig. 2).

Experimental

To a cold solution of 2-(2-aminomethyl)pyridine ($2 \mathrm{ml}, 19 \mathrm{mmol}$) and triethylamine $(2.63 \mathrm{ml}, 19 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$ was added dropwise a solution of benzyl chloride ($2 \mathrm{ml}, 17.2 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$. Stirring was continued at room temperature for 1 h , then at 333 K for 5 h . After filtering, the filtrate was washed with water, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then evaporated to give N -(pyridin-2-ylmethyl)benzamide as a yellow oil. To a solution of the oil $(0.16 \mathrm{~g}, 0.75 \mathrm{mmol})$ in ethyl acetate $(10 \mathrm{ml})$ was added slowly a solution of $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.12 \mathrm{~g}, 0.39 \mathrm{mmol})$ in $\mathrm{EtOH}(5 \mathrm{ml})$. The mixture was stirred for 5 h until a white solid appeared. Colourless crystals suitable for an X-ray diffraction study were obtained by slow evaporation of an EtOH solution.

Crystal data

$\left[\mathrm{Cd}\left(\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)_{2}$
$M_{r}=694.94$
Monoclinic, $C 2 / c$
$a=15.7144$ (10) £
$b=9.1003$ (6) \AA
$c=21.2585$ (13) \AA
$\beta=105.547$ (1) ${ }^{\circ}$
$V=2928.9$ (3) \AA^{3}
$Z=4$

Data collection

Siemens SMART 1000 CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.781, T_{\text {max }}=0.968$
7992 measured reflections

$$
\begin{aligned}
& D_{x}=1.576 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 2586 \\
& \quad \text { reflections } \\
& \theta=2.6-22.8^{\circ} \\
& \mu=0.81 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Needle, colourless } \\
& 0.32 \times 0.06 \times 0.04 \mathrm{~mm}
\end{aligned}
$$

2886 independent reflections
2549 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-18 \rightarrow 19$
$k=-11 \rightarrow 9$
$l=-26 \rightarrow 25$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.083$
$S=1.02$
2886 reflections
202 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1 $W-\mathrm{H} 1 W A \cdots \mathrm{O} 2^{\mathrm{ii}}$	$0.843(10)$	$1.96(2)$	$2.783(4)$	$164(8)$
O2 $W-\mathrm{H} 2 W A \cdots \mathrm{O} 2^{\text {iii }}$	$0.845(10)$	$2.23(5)$	$2.974(4)$	$146(8)$
O2W-H2WA \cdots O4 $^{\text {iii }}$	$0.845(10)$	$2.25(4)$	$3.037(4)$	$156(8)$
N1-H1 \cdots O3	0.86	2.38	$3.062(4)$	136
N1-H1 O 4	0.86	2.31	$3.089(4)$	151

Symmetry codes: (ii) $x-\frac{1}{2}, y+\frac{1}{2}, z$; (iii) $x-\frac{1}{2}, y-\frac{1}{2}, z$.
All H atoms attached to C and N atoms were located in difference Fourier maps but introduced in calculated position and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-$

Figure 1
The structure of compound (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. The nitrate anion has been omitted for clarity. [Symmetry codes: (i) $-x, y, \frac{1}{2}-z$.]

Figure 2
A view showing the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and the three-dimensional network. Hydrogen bonds are indicated by dashed lines. H atoms not involved in hydrogen-bond interactions have been omitted for clarity. [Symmetry codes: (i) $-x, y, \frac{1}{2}-z$; (ii) $x-\frac{1}{2}, \frac{1}{2}+y, z$.]
$0.97 \AA, \mathrm{~N}-\mathrm{H}=0.86 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$. The H atoms for the water molecules were refined using $\mathrm{O}-\mathrm{H}$ restraints of $0.85(1) \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O})$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEPIII (Burnett \& Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL and PARST (Nardelli, 1995).

This project was supported by the Programme for New Century Excellent Talents in Universities (grant No. NCET-04-0649) and the Project of Educational Administration of Shandong Province (grant No. J04B12).

metal-organic papers

References

Arora, J., Bordeleau, M., Dube, L., Jarvie, K., Mazzocco, L., Peragine, J., Tehim, A. \& Egle, I. (2005). Bioorg. Med. Chem. Lett. 15, 5253-5256.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Fekner, T., Gallucci, J. \& Chan, M. K. (2004). J. Am. Chem. Soc. 126, 223-236.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Nielsen, F. E., Jacobsen, P., Worsaae, A., Arkhammar, P. O. G., Wahl, P. \& Hansen, J. B. (2004). Bioorg. Med. Chem. Lett. 14, 5727-5730.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Software Reference Manual, Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

